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Memory‑inspired spiking 
hyperdimensional network 
for robust online learning
Zhuowen Zou1,6, Haleh Alimohamadi2, Ali Zakeri6, Farhad Imani3, Yeseong Kim4, 
M. Hassan Najafi5 & Mohsen Imani6*

Recently, brain-inspired computing models have shown great potential to outperform today’s deep 
learning solutions in terms of robustness and energy efficiency. Particularly, Spiking Neural Networks 
(SNNs) and HyperDimensional Computing (HDC) have shown promising results in enabling efficient 
and robust cognitive learning. Despite the success, these two brain-inspired models have different 
strengths. While SNN mimics the physical properties of the human brain, HDC models the brain on a 
more abstract and functional level. Their design philosophies demonstrate complementary patterns 
that motivate their combination. With the help of the classical psychological model on memory, we 
propose SpikeHD, the first framework that fundamentally combines Spiking neural network and 
hyperdimensional computing. SpikeHD generates a scalable and strong cognitive learning system 
that better mimics brain functionality. SpikeHD exploits spiking neural networks to extract low-level 
features by preserving the spatial and temporal correlation of raw event-based spike data. Then, 
it utilizes HDC to operate over SNN output by mapping the signal into high-dimensional space, 
learning the abstract information, and classifying the data. Our extensive evaluation on a set of 
benchmark classification problems shows that SpikeHD provides the following benefit compared to 
SNN architecture: (1) significantly enhance learning capability by exploiting two-stage information 
processing, (2) enables substantial robustness to noise and failure, and (3) reduces the network size 
and required parameters to learn complex information.

Many applications run machine learning algorithms to assimilate the data collected in the swarm of devices on 
the Internet of Things (IoT). Sending all the data to the cloud for processing is not scalable, cannot guarantee a 
real-time response. However, the high computational complexity and memory requirement of existing DNNs 
hinder usability to a wide variety of real-life embedded applications where the device resources and power budget 
is limited1–4. Therefore, we need alternative learning methods to train on the less-powerful IoT devices while 
ensuring robustness and generalization.

System efficiency comes from sensing and data processing. Unlike classical vision systems, neuromorphic 
systems try to efficiently capture a notion of seeing motion5–9. Bio-inspired learning methods, i.e., spiking neural 
networks (SNNs), address issues related to energy efficiency5,10–23. SNNs have been widely used in many areas of 
learning and signal processing24–27. These systems have yet to provide robustness and intelligence that matches 
that from embodied human cognition. For example, the existing bio-inspired method cannot integrate sensory 
perceptions with actions. SNN applications in machine learning have largely been limited to very shallow neu-
ral network architectures for simple problems. Using deep SNN architecture often does not improve learning 
accuracy and can result in a possible training divergence9. In addition, SNNs lack brain-like robustness and 
cognitive support.

On the other hand, Hyperdimensional Computing (HDC) is introduced as a promising brain-inspired solu-
tion for robust and efficient learning28. HDC is motivated by the understanding that the human brain operates on 
high-dimensional representations of data originated from the large size of brain circuits29. It thereby models the 
human memory using points of a high-dimensional space, that is, with hypervectors. HDC performs a learning 
task after mapping data into high-dimensional space. This encoding is performed using a set of pre-generated 
base vectors. HDC is well suited to address several learning tasks in IoT systems as: (i) HDC is computationally 
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efficient and amenable to hardware level optimization30–32, (ii) it supports single-pass training with no back-
propagation or gradient computation, (iii) HDC offers an intuitive and human-interpretable model33, (iv) it is a 
computational paradigm that can be applied to a wide range of learning and cognitive problems33–45, and (v) it 
provides strong robustness to noise—a key strength for IoT systems46. Despite the above-listed advantages, HDC 
encoding schemes are not designed for handling neuromorphic data. HDC lacks the behavioral resemblance to 
neurons to extract features from neuromorphic data effectively.

While SNN mimics the physical properties of the brain (how biological neurons are operating), HDC models 
the brain at a more abstract and functional level. This makes these two computational models complementary. 
Inspired by the classical and popular memory model, introduced by Atkinson–Shiffrin47, we propose a novel 
framework that fundamentally combines Spiking neural network and hyperdimensional computing. Our frame-
work, called SpikeHD , enables a scalable and strong cognitive learning system to better mimic brain functional-
ity. SpikeHD creates a cross-layer brain-inspired system that captures information of sensory data from different 
perspectives: low-level neural activity and pattern-based neural representation. Since both SNN and HDC have 
memorization capability, they are powerful in preserving spatial and temporal information. Therefore, SpikeHD 
can ensure advanced learning capability with high accuracy.

•	 To the best of our knowledge, SpikeHD is the first framework that fundamentally combines SNN and HDC. 
SpikeHD first exploits a few layers of spiking neural network to extract low-level spatiotemporal information 
of raw event-based data. Then, it utilizes HDC to operate over SNN output, learn the abstract information, 
and classifying the data. To ensure robust, efficient, and accurate HDC learning, we present a non-linear 
neural encoder that transforms data into knowledge at a very low cost and with comparable accuracy to 
state-of-the-art methods for diverse applications.

•	 We develop an end-to-end framework that enables co-training of SNN and HDC models. Instead of using 
deep SNN architecture, we exploit a simple SNN architecture that updates based on gradient rule and con-
nects it to an HDC module capable of fast and single-pass learning. Our framework trains SNN and HDC 
models simultaneously to ensure that the data generated by SNN is optimal for HDC learning.

•	 SpikeHD supports online learning from the data stream. In this configuration, we keep the SNN layer static 
while exploiting HDC single-pass training capability to update the model in real-time. This enables SpikeHD 
model to learn or update its functionality with very few samples and without paying the cost of storing large-
scale train data for iterative learning.

We evaluate SpikeHD on multiple classification problems. Our evaluation shows that SpikeHD provides 
significant benefits compared to both HDC and SNN architectures: (1) enhance learning capability by exploit-
ing two-stage information processing, and (2) significantly reduces the network size and required parameters to 
learn complex information. For example, our results indicate that SpikeHD can provide 6.1% and 3.8% higher 
classification accuracy on MNIST and DVS Gesture datasets.

Brain‑inspired computing models
The human brain remains the most sophisticated processing component that has ever existed. The ever-growing 
research in biological vision, cognitive psychology, and neuroscience has given rise to many concepts that have 
led to prolific advancement in artificial intelligent accomplishing cognitive tasks41,48,49.

Analogy from the brain.  In this work, we enhance the machine learning method by exploring and trans-
lating the memory processing capability of the brain47. To maximize the synergy between anthropogenic con-
cepts and a body in silico, we analyzed the distinct neuromorphic nature of SNN and Vector Symbolic Archi-
tecture (VSA)50,51. We found that the two studies approach neuromorphic computing from complementary 
philosophies: SNN embodies the sensory processing patterns of the brain from a biological standpoint, while the 
VSA approach processes data from the behavioral patterns. Finally, we evaluate prototypes in both fields using 
DECOLLE52 (as SNN representative) and Hyperdimensional Computing28 (as VSA representative).

Memory model.  The wildly accepted memory model of Atkinson and Shiffrin53 includes sensory registers, 
short-term store, and long-term store. In particular, short-term store (STS) consists of the memory in storage for 
a short amount of time (referred to as “short-term memory”) that can be actively engaged in processing (“work-
ing memory”). Long-term store (LTS) refers to the memory maintained for long periods of time. Structures 
centered around the hippocampus serves to process and transfer memory between short-term and long-term 
storage54,55.

SNN (DECOLLE) as STS.  SNN mimics biological neural networks at the neuronal level, where the representa-
tion of the information is the collective state of the spiking neurons, including membrane potential and synaptic 
states. Given neuromorphic data that are either transformed from frame-based counterparts or captured directly 
by Dynamic Vision Sensors (DVS), SNN has the structural advantage in accomplishing simple cognitive tasks. 
In particular, the recurrent nature of DECOLLE renders it ideal for serving both as a sensory processing unit 
and as an STS.

VSA (HDC) as LTS.  Hyperdimensional Computing (HDC) mimics the brain on a functional and behavioral 
level. Just like how the hippocampus represents long-term memory for the sake of efficient storage and retrieval, 
HDC represents information in hypervectors that can be efficiently and robustly stored in hardware, such as 
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FPGA and GPU, when compared to both non-VSA and most VSA representations. Given informative pieces 
of data (in this case, the sensory data after being processed by SNN), HDC can efficiently extract higher-level 
concepts through the process of encoding (what the hippocampus does) and memorization (what the long-term 
storage does).

Hyperdimensional computing.  The brain’s circuits are massive in terms of numbers of neurons and syn-
apses, suggesting that large circuits are fundamental to the brain’s computing. HDC28 explores this idea by look-
ing at computing with ultra-wide words—that is, with very high-dimensional vectors, or hypervectors. The fun-
damental units of computation in HDC are high dimensional representations of data known as “hypervectors”, 
which are constructed from raw signals using an encoding procedure. There exist a huge number of different, 
nearly orthogonal hypervectors with the dimensionality in the thousands56. This lets us combine such hypervec-
tors into a new hypervector using well-defined vector space operations while keeping the information of the two 
with high probability. Hypervectors are holographic and (pseudo)random with i.i.d. components. A hypervector 
contains all the information combined and spread across all its components in a full holistic representation so 
that no element is more responsible for storing any piece of information than another.

In recent years, HDC has been employed in a range of applications, such as classification57, activity 
recognition58, biomedical signal processing59, multimodal sensor fusion60, security61,62 and distributed sensors63,64. 
A key HDC advantage is its training capability in one or few shots, where object categories are learned from 
few examples instead of many iterations. HDC has achieved comparable to higher accuracy compared to sup-
port vector machines (SVMs)65,66, gradient boosting67, and convolutional neural networks (CNNs)33, as well as 
lower execution energy on embedded processors compared to SVMs68, CNNs and long short-term memory66.

Spiking neural network.  Spiking neural networks (SNNs) are brain-inspired solutions for fault-tolerant 
and energy-efficient signal processing. SNNs take inspiration from the biological functionality of neurons in the 
human brain to engineering more efficient computing architectures. In the area of machine learning, SNN shares 
common properties to Recurrent Neural Network (RNNs), such as similarity in general architecture, temporal 
dynamics, and learning through weight adjustments69. Several works are now establishing formal equivalences 
between RNNs and networks of spiking leaky integrate-and-fire (LIF) neurons which are widely used in com-
putational neuroscience70. In the LIF model, the neuron’s state is the momentary activation level that can be 
pushed higher or lower depending on the incoming spike value. The neuron state will be reset to a lower value 
after firing the state71.

The complicated dynamics of the biological spiking neuron has posed great difficulty in designing efficient 
SNNs capable of solving complex information processing problems72. Early models has relied on Spike Time 
Dependent Plasticity (STDP) that depends on pre-synaptic and post-synaptic information73,74, which results in 
non-differentiable models73,74. Surrogate gradients and multiple learning schemes has been proposed to tackle 
this challenge. For example, spatio-temporal backpropagation (STBP)16 uses an approximated derivative for 
spike activity that combines spatial and temporal domain to allow gradient descent75 proposed Spike-timing-
dependent back-propagation (STDBP) enabled by Rectified linear postsynaptic potential function (ReL-PSP) to 
learn in an event-driven manner. Aggregate-label learning such as efficient threshold-driven plasticity (ETDP) 
algorithm also demonstrated ability to learn useful multi-modal sensory clues efficiently76. Finally, progressive 
tandem learning of SNNs77 and VGG and residual architectures9, which applies an ANN-to-SNN conversion 
and layer-wise learning framework, has also showed efficient learning capabilities in classification and regression 
tasks. In addition to the surrogate gradient methods that constitute a large portion of the literature, many neuron 
models that compute exact gradients has also been proposed, such as EventProp78, first-spike-time learning79, 
and Temporal Coding with Alpha Synaptic Function80. Biologically plausible models such as E-prop81 have also 
been of interests, and readers are referred to82 for an in-depth survey.

Other significant results on biologically plausible learning with SNN, such as E-Prop9 are also not mentioned, 
and are directly comparable to DECOLLE.

Several existing hardware solutions have focused on their implementation in the forms of unsupervised and 
semi-supervised learning83,84. However, these works are limited in learning static patterns or shallow networks. 
Recent breakthrough research shows that Deep Continuous Local Learning (DECOLLE) provides effective and 
efficient training with approximate loss that maintains synaptic plasticity. Unlike conventional surrogate gradient 
learning, the cost function of DECOLLE is local in time and space, such that only one trace per input neuron is 
required. This enables the algorithm to scale linearly in space. Furthermore, in DECOLLE the computation of 
the gradients can reuse the variables computed for the forward dynamics, so learning has no additional memory 
overhead24,25.

SpikeHD overview
In this paper, we propose SpikeHD , the first hybrid solution that fundamentally combines spiking neural net-
works and hyperdimensional computing. Our framework exploits SNN and HDC in the following ways:

•	 Spiking neural network SNN extracts low-level information of neuromorphic data. SNN is like a feature 
extractor that learns spatiotemporal information of noisy spikes and projects them into meaningful repre-
sentation. SNN eliminates noisy events that are less frequent in a temporal manner and exploits redundancy 
to further strengthen spatially correlated information. DECOLLE, in particular, uses deep continuous local 
learning, where the network errors are computed within each layer, thus requiring little memory overhead 
for computing gradients.
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•	 Hyperdimensional encoding HDC performs a higher level learning over spike data generated by SNN. As 
explained in “Introduction”, HDC consists of two layers: encoder and learner. The encoder maps SNN output 
spikes into high-dimensional space. HDC encoder is unsupervised and significantly efficient since it does 
not require any training process. Since the encoder is non-linear, a single-layer HDC classifier can effectively 
learn the data. The training only operates over the HDC model to keep efficiency and does not propagate to 
the encoder module.

How to combine SNN and HDC.  A naive approach can use SNN and HDC in parallel or in series to 
make a prediction. In the parallel version, both SNN and HDC can make independent predictions, and we can 
make decisions by looking at the decisions along with their confidence. However, this approach has the following 
challenges: (1) high computational cost to train two separated models, and (2) decision making and trust in the 
model is a complex task and requires another learning model. Similarly, the serial connection of SNN and HDC 
has the following challenges: (1) an information flow that is limited between the models impedes the ability of 
both: the latter fails to make good predictions due to a lack of information, and the former fails to be updated 
due to a lack of loss inferred from the prediction. (2) SNN and HDC are working over different data representa-
tions and update rules. SNN works with spike data and is trained using gradient-based rule, while HDC works 
using dense high-dimensional data representation. This makes HDC and SNN learning not compatible and their 
interactions non-trivial.

Our contribution.  To get simultaneous benefits from SNN and HDC, SpikeHD needs to combine them 
based on their strengths and capabilities. Figure 1 shows an overview of our hybrid SpikeHD operating over 
neuromorphic data. SpikeHD exploits two layers of information extraction from event-based sensors: (1) SNN 
layer to extract low-level information by preserving spatiotemporal correlation of data and (2) hyperdimen-
sional computing to learn the abstract and high-level trend of data. SpikeHD developed a novel framework that 
co-trains SNN and HDC models. The co-training enables the interaction between SNN and HDC to ensure 
convergence towards an optimal model. As Fig. 1 shows, hyperdimensional learning, which operates over the 
spike data, has two components: a non-linear neural encoder that maps SNN output to high-dimensional space 
and an HDC learning model that combines encoded hypervectors to generate a hypervector representing each 
class. The HDC model will always take the final prediction.

In “Introduction”, we explained the details of HDC learning. In the rest of the proposal, we present our 
framework that integrates SNN and HDC (“SpikeHD : integration of brain models”).

SpikeHD : integration of brain models
In this section, we propose a novel framework to combine spiking neural networks and hyperdimensional com-
puting. Figure 2 shows an overview of our framework combining SNN and HDC.

Step I: SNN training.  Our first step aims to establish feature extraction and to fine-tune the short-term 
memory behavior of the model. The solution starts by training the original SNN model, implemented with 
DECOLLE, using an entire or a batch of train data. The SNN is a multi-layer network that gets spike data as an 
input and makes a learning decision on the output layer. Depending on the loss function defined on SNN out-
put, the SNN uses a gradient-based rule to update the synapse’s weights (A). During this phase of the training, 
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Figure 1.   SpikeHD overview architecture: (a) spiking hyperdimensional neural network (Reprinted with 
permission from reference85. Copyright 2012 Elsevier); The leaky-integrate-and-fire (LIF) layers of the SNN 
have a high synaptic resemblance to the neuronal systems in the brain. This gives rise to its advantage in 
(the learning of) sensory data processing and maintaining working memory for classification. (b) The high-
dimensionality and holography of HDC renders a cerebellum-like functionality with a high capacity memory. 
(c) the combination of the two as guided by the Atkinson-Shiffrin memory model allows SpikeHD to take 
advantage of both and overcome their respective shortcomings.
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the SNN learns to extract information from noisy neuromorphic data. Because the synaptic plasticity rules are 
partially derived from the neural dynamics of the spiking neurons, it is capable of learning spatiotemporal pat-
terns. Increasingly complex features can be learned by adding layers to the SNN, but it is costly and introduces 
difficulty in convergence. Thus, the number of layers is often limited.

Step II: HDC training.  After training the SNN to approximate convergence, the solution applies HDC injec-
tion: we split SNN from early layers (often a relatively deep layer) and connect it to the HDC module to extract 
more abstract information (B). In this step, the SNN layers are considered to be static because no training hap-
pens on SNN. For each train data, we first pass data through SNN. Then, we will be given the SNN representation 
in the split layer as labeled data to the HDC module for training. HDC encoding serves as the “hippocampus” 
and maps the spike data into high-dimensional space. Due to the non-linearity of the encoder, an efficient HDC 
learning module can effectively learn the pattern of data (C). One advantage of HDC is its capability in learning 
a one-pass classification model. This eliminates the necessity of a costly iterative method to train a model. As 
the learning heavily depends on memorization of the encoded hypervectors, the HDC model serves as the long-
term memory of the model.

Step III: SNN and HDC co‑training.  The current approach trains SNN and HDC sequentially, where the 
SNN training does not get any feedback from HDC module. The SNN module is trained based on the loss func-
tion defined at the SNN output layer. However, as we explained, our hybrid architecture performs the prediction 
using the HDC model. This results in sub-optimal training of SpikeHD architecture.

To address this issue, we propose a novel co-training method that enables SNN to be trained based on the 
HDC model prediction. To ensure the SNN layer is well trained for HDC prediction, SpikeHD retrains the SNN 
layers after HDC training. For every training data or batch of data, SpikeHD starts updating the SNN as fol-
lows: Firstly, the spike data passes through the split SNN layer (D) up until the point of injection and generates 
vectors as input to the HDC module. Next, the HDC module encodes the input, which is then compared to the 
HDC model; the loss function is computed against the target label (E). After that, the loss is used to update the 
HDC model in a single-pass. The learning in HDC is pattern-based and can perform with significantly higher 
computation efficiency (F). Then, HDC back-propagates the loss through the HDC module back to the point of 
injection (G). Finally, we update the SNN model using a gradient-based rule with the backpropagated loss (H). 
This procedure continues iteratively over train data until finding a suitable SNN representation that can ensure 
maximum prediction accuracy in HDC output.

One thing to note is that the back-propagation in (F) mainly concerns two matrix multiplications with no 
significant overhead during training. Passing through the HDC model requires multiplying the loss with the 
HDC model itself, which generates a loss hypervector. To pass the loss hypervector through the static encoder, 
we apply the inverse of the activation function and an inverse of the encoding matrix. Since the encoding matrix 
is not invertible, the Moore–Penrose pseudoinverse of the matrix is applied, and it can be pre-computed upon 
the initialization of the model. Since the HDC model has faster training than SNN, one can decide to update 
the HDC model less frequently during the co-training step. During co-training, the HDC loss function can be 
back-propagated and used to update the SNN layer while the HDC model stays constant. The HDC model update 
can happen less frequently to ensure lower training costs.

SpikeHD online learning.  Despite the effectiveness of the proposed framework, the training hybrid SNN 
and HDC model can be costly for small embedded devices. Our framework requires iteratively repeat co-train-
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the output of HDC module is used to update both HDC memory and SNN layers simultaneously.
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ing phases, which often require a large number of data and iterations to update the quality of the SNN model. 
Embedded devices may have the following limitations to implement SpikeHD iterative learning: (1) embedded 
devices often do not have enough memory to keep all train data for iterative learning. As a result, to enable 
online learning, SpikeHD needs to be updated in one-pass with no need to store train data. (2) embedded 
devices have limited resources which may not be enough to support the costly gradient-based model update 
required by SNN. Here, we propose a solution that enables online SpikeHD learning. As explained in “Introduc-
tion”, HDC supports single-pass training by creating a model with one-time looking at train data. We exploit this 
feature to update SpikeHD model in real-time based on the data stream. In this configuration, the majority of 
our learning relies Step II, with limited training on Step I and no required training on step III. In particular, the 
SNN is first trained with very few data points to learn feature extraction. Then, the SNN model is assumed to be 
static and does not get updated. Instead, for each batch of data, SpikeHD only updates the HDC model based on 
the generated loss function. This is similar to transfer learning, where the SNN knowledge is used for new data or 
environments. This model results in much faster convergence and eliminates the necessity of storing train data.

SpikeHD scalability & robustness.  SpikeHD hybrid architecture provides an advanced brain-inspired 
learning solution with multi-layer information processing. This architecture is significantly strong in preserving 
spatiotemporal information. SpikeHD also provides the following advantages:

•	 Scalability Using deep SNN architecture often does not improve learning accuracy or results in a possible 
divergence. SpikeHD hybrid architecture enables SNNs to use effective shallow networks rather than deep 
non-scalable networks. HDC encoding is used as secondary information processing to provide a high quality 
of learning while ensuring fast and scalable SNN training.

•	 Robustness HDC encoding is holographic and redundant, thus provides significant robustness to noise and 
failure. Our represents stores information of events as a pattern of neural activity in high-dimensional space. 
Therefore, losing a single or series of dimensions would not remove the information of an event. We further 
explore on SpikeHD robustness in “SpikeHD accuracy and robustness vs. HDC dimensionality”.

Evaluation
We evaluate the classification performance of SpikeHD on two benchmarks: DVS Gesture Dataset86 and spike-
trained MNIST87. DVS Gesture Dataset is obtained by Dynamic Vision Sensor (DVS) capturing 11 types of hand 
and arm gestures from 29 distinct subjects under 3 different lighting conditions, and we downsized the event 
streams from 128× 128 to 32× 32 and binned in frames of 1ms for efficient tra52. It is thus natively neuromor-
phic. Spike-trained MNIST, in contrast, is artificial. It comes from processing the original frame-based MNIST 
images to spike trains, where the serialized pixel values determine the firing rate of the simulated sensors. We 
used the poisson model of spike generation with 1000 timesteps for converting spike-trained MNIST, which was 
available as part of DECOLLE codebase52.

The proposed SpikeHD framework has been implemented with two co-designed modules: spiking neural 
network and hyperdimensional computing. For SNN, we use the existing open-source library52 that trains a net-
work using DECOLLE. For HDC, we have developed an in-house library compatible with PyTorch. Our library 
is an optimized version of PyTorch that better handles the HDC memory requirement for CPU and GPU. The 
default parameters of SpikeHD is as follows. The SNN component consists of 5 LIF layers with respectively 150, 
120, 100, 120, and 150 neurons. Each LIF layer is associated with a readout layer and a dropout layer as made 
necessary by local learning. Time constants that capture the decay dynamics of spiking neurons are α = 0.9 
and β = 0.85 . For the HDC component, a dimension of D = 4000 is used, and the HDC encoder utilizes the 
hyperbolic tangent function (Tanh) as the activation function. The injection depth that indicates the layer of 
SNN where HDC is injected is by default 4, which means that it is injected right before the last LIF layer. Dur-
ing training, we used a smooth L1 loss function for Step I, similar to52, and L1 loss function for Step II and III. 
We used AdaMax Optimizer with parameters β1 = 0 , β2 = 0.95 , and lr = 10

−9 . Finally, the default dataset for 
evaluation is spike-trained MNIST.

Quality of learning.  Figure 3 compares the test classification accuracy of SpikeHD with DECOLLE. For 
SNN, we use the fully connected DECOLLE architecture in our default configuration. For HDC, we adopt HDC 
models to directly encode and learn from neuromorphic data with the default dimension and HDC encoder. 
For different instances of SpikeHD , we apply the default parameters except for our variable—HDC encoder. The 
models are trained iteratively for 40 epochs, all of which reached convergence.

Our evaluation shows that default SpikeHD outperforms both SNN and HDC in terms of quality of learning. 
HDC model alone provides the lowest classification accuracy, as the HDC encoder is weak in extracting spatial 
and temporal information from noisy spike data. In other words, HDC learning is abstract and cannot be well 
adapted to extract low-level information from neuromorphic data. In contrast, SNN naturally models the brain’s 
visual systems, thus providing high classification accuracy. However, the SNN accuracy saturates with the increase 
in the number of layers. In contrast, SpikeHD is a powerful classifier that extracts multi-layer information from 
the neuromorphic data. Therefore, it eliminates the necessity of using deep SNN layers. Our evaluation shows 
that SpikeHD achieves, on average, 5.7% and 3.2% higher classification accuracy compared to the SNN model 
after co-training on MNIST and DVS Gesture, respectively.

Table 1 compares the test classification of convolutional SpikeHD with state-of-the-art SNNs. For network 
architecture with only fully connected layers, the comparisons are less insightful, as we were not able to find clas-
sification results for deep spiking neural networks on MNIST. The performance of shallow and fully connected 
DECOLLE is similar to that of the deep one demonstrated in Fig. 3, but SpikeHD does not improve upon its 
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accuracy as expected. While the test accuracy of both DECOLLE and SpikeHD in the fully connected setting are 
lower than those of EventProp and STDBP, convolutional SpikeHD is able to improve upon its base DECOLLE 
and achieve comparable accuracy to STDBP. This implies the opportunity for SpikeHD to improve upon other 
models through the combination illustrated in “SpikeHD : integration of brain models”.

Hyperdimensional encoding.  To show the impact of our HDC encoder, Fig. 3 also compares SpikeHD 
accuracy when HDC is using different encoding modules: linear (Binary)33,89, random projection (Uniform)66,90, 
and our proposed non-linear encoder (Gaussian). Our evaluation shows that SpikeHD using a non-linear 
encoder provides significantly higher classification accuracy compared to the other encoders, independent of 
the base hypervectors. In particular, linear encoding (labeled as ‘Binary’ in Fig. 3) provides the lowest accuracy 
among them due to limited HDC memory capacity—4000 bits per class—compared to the ones with non-binary 
base vectors. The higher accuracy of our encoding comes from: (1) SpikeHD capability in considering the inter-
actions between the features, and (2) exploiting an activation function that makes the mapping non-linear. Our 
evaluation shows that SpikeHD utilizing non-linear encoder achieves, on average, 3.1% and 2.4% higher quality 
of learning compared to linear and random projection encoder.

Our evaluation also showed that there is progressive improvement in the learning accuracy as the model 
proceeds with training steps. In most cases, the test accuracy has significant improvement from step I to step II, 
and slightly less from step III. We will discuss the possible causes in the later evaluations.

SpikeHD training phases.  Figure 4 shows the effect of depth of HDC injection on SpikeHD classification 
accuracy during both train and test phases. The results are reported for SpikeHD in comparison with DECOLLE 
with our default setting.

During step I of the training (Fig. 4a), the accuracy of both the training and testing data quickly increases 
and stabilizes. This implies the efficiency and effectiveness of DECOLLE in simulating and processing spike 
data, despite its limited generalization as indicated by the non-trivial difference between test accuracy and train 
accuracy.

When the model enters step II, the training accuracy experience a sharp drop at epoch 20 because we switch 
from the latter LIF layer to HDC module (Fig. 4b). The cause is obvious: since the newly introduced HDC 
memory is initially a random model, it has no predictive power. That said, the train/test is then reduced and 
stabilized in about one epoch. In addition, test accuracy experience an improvement (Fig. 4c) for the displayed 
depths of injection, which indicates that HDC modules further extracted and memorized features from the 
DECOLLE layers that are useful to the prediction. We omitted the result of the trivial model with HDC-injection 
at depth-5 because it achieves similar performance as the baseline (pure SNN). This is because the depth-5 HDC 
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Figure 3.   Training performance of SpikeHD with distinct HDC encoders on MNIST and DVSGesture. Each 
bar plot represent the accuracy of SNN along with SpikeHD using HDC encoders with binary, uniform, or 
Gaussian base hypervectors. For HDC encoder, the results are reported with and without an activation function 
(+A indicates an encoder with Tanh activation.). The error bars are shown when repeating each experiment for 
20 times.

Table 1.   Comparison of published classification test accuracy on MNIST for SNNs and State-of-the-art ANN 
and their respective architectures. The naming of network architectures follows75, where layers are separated 
by—and spatial dimensions are separated by ×. The convolution layer and pooling layer are represented by C 
and P, and the hyperdimension memory, unique to SpikeHD , is represented by H.

Model and algorithms Network architecture Accuracy (%)

DECOLLE 16×16C7-P2-32×32C7-P2-64 98.0

EventProp78 784-350-10 97.6

STDBP75 28×28-16C5-P2-32C5-P2-800-128-10 99.4

HVCs88 *State-of-the-art ANN model 99.8

SpikeHD 16×16C7-P2-32×32C7-P2-64-4kH 99.2
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module connects to the last layer of SNN, which essentially takes the prediction produced by SNN and does 
learning based on that.

Finally, the model enters step 3 at epoch 30. Notice that the training accuracy does not have any improve-
ment while the test accuracy has its final improvement (Fig. 4d) most accentuated for the depth-3 model. This 
indicates that the improvement in test prediction comes from the update to the SNN layer in conjunction with 
that to the HDC memory.

As results indicate, the original SNN network suffers from overfitting, as demonstrated by the difference in 
train and test accuracy due to the depth of the network. In comparison, SpikeHD mitigates this issue by introduc-
ing more explicit memory based on non-linear encoding and is less sensitive to the number of layers. Starting 
from depth-4, SpikeHD observes significant improvement on the prediction, and the best performance is at 
depth-4 with the parameters we have chosen; this is partly due to DECOLLE’s capacity to extract more meaning-
ful features in the deeper layers, and the long-term memory that the HDC model provides gives rise to increased 
testing accuracy and, if not eliminated, mitigated the overfitting of DECOLLE model (Fig. 4d).

SpikeHD online learning.  Figure 5 compares SpikeHD training efficiency during SpikeHD offline and 
online training. For fairness, both methods perform Step I and Step II SpikeHD training over a small portion 
of train data. For the rest of the train data, SpikeHD-offline continues updating the model by co-training SNN 
and HDC (Step III defined in our framework), while SpikeHD-online only updates the HDC. In other words, 
SpikeHD-online keeps SNN layers fixed and transfers the learned knowledge for the rest of train data.

Notice firstly that even with only 100 MNIST samples, 10 for each class, DECOLLE was able to extract 
many meaningful features. This is implicated by the immediate increase in test accuracy in Step I (see Fig. 5). In 
Step II, the epoch-wise and time-wise convergence results are reported for both offline and online methods. The 
time-wise graph is shown as one epoch has different times in offline and online techniques. Our results indicate 
that the online method reaches convergence quicker than the offline method, though the offline method may 
perform better upon convergence. We observe that the training time of the offline method is much longer than 
the online learning method. This is partly due to DECOLLE’s local training. We see from the convergence speed 
and the accuracy improvement that (1) online training incorporates new samples quickly into HDC memory, 
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and (2) the co-training succeeds in backpropagating the loss to the SNN module so that it gets updated for bet-
ter performance.

Our evaluation shows that SpikeHD-online can provide comparable accuracy to SpikeHD-offline learning 
method even when the initial training is very limited (100 samples). In other words, SpikeHD can ignore costly 
iterative training for a big portion of train data. Instead, it simply updates the HDC model at a minimal cost. 
Our evaluation shows that SpikeHD-online can significantly speedup the training process and also reduces 
the memory footprint required for training. For example, SpikeHD-online enables 4.6 × faster and 3.1 × lower 
trainable memory while ensuring the same quality as an online model.

SpikeHD accuracy and robustness vs. HDC dimensionality.  Dimensionality creates a trade-off 
between three SpikeHD parameters: accuracy, efficiency, and robustness. Figure 6 shows the impact of hyper-
vector dimension on SpikeHD test accuracy (considering 0% error rate). SpikeHD in higher dimensionality is 
a powerful model that can effectively learn the SNN output patterns. SpikeHD provides maximum accuracy 
even when the dimension reduces from D = 8k to D = 4k . Further decreasing the dimensionality from D = 4k 
results in a minor effect on SpikeHD quality of learning. For example, SpikeHD in D = 2k and D = 1k pro-
vides only 2.3% and 3.5% quality loss compared to SpikeHD model in full dimensionality ( D = 8k ). SpikeHD 
efficiency also directly depends on the model dimensionality. A higher dimensionality increases the number 
of required computations in both train and test. However, because the accuracy of HDC modules resembles a 
sigmoid function along the dimension, to reduce the computation cost, one can decide to use SpikeHD in lower 
dimensionality. For example, reducing SpikeHD dimension from D = 4k to D = 2k ( D = 1k ) results in 1.7 × 
(3.1 ×) faster computation.

We compare SpikeHD computational robustness with SNN. Our evaluation shows that SpikeHD HDC 
module significantly improves SNN robustness to possible noise and failure. Figure 6 shows SpikeHD accuracy 
when losing a different proportion of random neurons in the model. The results are reported for SpikeHD 
using different dimensionality and using different size SNN networks. Our evaluation shows that SpikeHD , in 
general, provides higher robustness than existing SNN, especially when SpikeHD dimensionality increases. For 
example, under 10% random noise, SpikeHD and SNN maintain 94.0% and 87.1% quality. The ability to sustain 
prediction quality generally increases as the dimension of HDC memory increases, though it does generate a 
slight dip when the HDC dimension is low. This can be attributed to the fault tolerance of DECOLLE and the 
higher vulnerability of low-dimensional HDC modules. Our results indicate that test accuracy has only a slight 
advantage when the HDC dimension is high, and SNN is large. This advantage will be more accentuated in 
smaller SNN, or in more complex tasks.

Conclusion and discussion
In this paper, we propose SpikeHD , a novel framework that combines Spiking neural network and hyperdimen-
sional computing in order to design a scalable and strong cognitive learning system that better mimics brain 
functionality. SpikeHD exploits spiking neural networks to extract low-level features by preserving the spatial 
and temporal correlation of raw event-based spike data. Then, we utilize HDC to operate over SNN output by 
mapping the signal into high-dimensional space, learning the abstract information, and classifying the data. Our 
evaluation on a wide range of classification problems shows that SpikeHD provides significant benefit compared 
to both HDC and SNN architecture: (1) enhances learning capability by exploiting two-stage information pro-
cessing, (2) significantly reduces the network size and required parameters to learn complex information. For 
the rest of this section, we highlight some of the open challenges that our framework has yet to overcome and 
encourage exploration of the question along multiple axes (Fig. 7).

Loss backpropagation.  During step  III of SpikeHD , a Moore–Penrose inverse of the HDC encoder is 
applied to backpropagate the loss from the HDC module to the SNN. Since HDC encoder maps vectors to 
hypervectors, the rank of the inverse is limited to the output dimension of the SNN at the point of injection, 
which may be way less than the dimension. A large amount of information may be lost from this transition. We 
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experimented with several methods to solve this problem. One example is to continue training the original SNN, 
transfer the new weights to the SpikeHD , and then train the HDC module. This did not improve performance 
except in the case of the transfer learning task, where the context of the data or the task changes. One method 
that may be suggested is to introduce a regularization term in the loss function of the SNN layers such that it 
outputs an HDC-like vector as the representation of the data directly. This will avoid the explicit usage of the 
HDC non-linear encoder, and the loss will be optimally propagated up to the approximation introduced by the 
regularization term.

Component choices.  We have selected DECOLLE as SNN and HDC as VSA for our hybrid model for the 
reason we’ve discussed in section 2.1. It is optimized for time and energy efficiency, and practicality, as both 
models are known for such traits. Readers interested in the exploration of other aspects may choose to adopt our 
memory framework to other components. such as Legendre Memory Units91 and HDC, or BI-SNN and HRR92.

Concept interpretability.  Our current usage of the memory framework is to directly operate on long 
term memory and derives decisions from its representation, which simulates what the cerebellum does. For the 
purpose of completing the analogy to the Atkinson–Shiffrin memory model, it has yet to be incorporated the 
decoding mechanisms of the HDC memory: we did not fetch the long term memory back to the hippocampus 
and decode it for operations in working memory. This subject is not the purpose of this paper, and the decou-
pling of encoding and decoding invites more possibilities, as the HDC memory may be used as heterogeneous 
storage such that multiple tasks may be performed in one memory model.

That said, the subject of interpretability remains interesting at two levels. Each entry in the HDC memory 
represents the concept of the class, which can be decoded to retrieve a representation of the concept at the SNN 
level. The representation in SNN can then be interpreted to infer knowledge on the original sensory data.

Data availability
The datasets analysed during the current study are DVS Gesture Dataset86 and spike-trained MNIST87 which 
are available online for public use.
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